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Abstract

A technique is implemented for computing hypersonic aeroheating, shear stress, and other flow
properties on the windward side of a three-dimensional (3D) blunt body. The technique uses a
2D/axisymmetric flow solver modified by scale factors for a corresponding equivalent
axisymmetric body. Examples are given in which a 2D solver is used to calculate the flow at
selected meridional planes on elliptic paraboloids in reentry flight. The report describes the
equations and the codes used to convert the body surface parameters into input used to scale the
2D viscous shock layer equations in the axisymmetric viscous shock layer code. Very good
agrecment is obtained with solutions to finite rate chemistry 3D thin viscous shock layer
equations for a finite rate catalytic body.

Infroduction

To assess the design of reentry spacecraft with respect to aeroheating, a number of techniques are
available, depending on the actual geometry and the needed accuracy. For highest fidelity,
solutions to the full Navier-Stokes equations would be required, but this is very time-consuming
both in human labor as well as computer time. It is not practical to use the Navier-Stokes
solutions for quick assessments of proposed vehicle shapes because of the amount of time it
takes to define an adequate flow field grid and to run the solution until convergence. The
purpose of this work is to implement a rapid approximate technique for predicting aeroheating on
the windward side of three-dimensional (3D) vehicles at angle of attack. The technique involves
modifying 2D flow equations for an axisymmetric body at zero angle of attack using scaling
parameters in the equations that accounts for 3D effects in the flow. The method was developed
originally by Brykina, et al.'? and the factors only depend on body geometry and Reynolds
number.

In preliminary stages of design, an approximate geometry and correlations of the heat flux on
such geometries may be sufficient. Such tools as Detra, Kemp and Riddell®, or Fay and Riddell*
on the stagnation point of spheres may be adequate, or similarly there are relations for swept
cylinders. Likewise, flat plate correlations may be used on certain wing shapes or flaps. The
MINIVER or LANMIN’ code can be used for performing approximate heating calculations for
simple shapes. The INCHES code by Zoby and Simmonds® is an axisymmetric technique that
relies on the Maslen technique for shock shape. A somewhat higher fidelity engineering code
that also takes into account variable entropy edge conditions is the AEROHEAT code.” It uses
axisymmetric analog technique for 3D boundary layers. There have been some adequate
attempts to use axisymmetric codes for simple shapes such as the viscous shock layer (VSL)
method *® and even apply them to complex shapes at angle of attack, by approximating the shape
as an hyperboloid of revolution.'™"' Higher-order approximations have been developed for 3D
shapes such as the 3D VSL method and 3D parabolized Navier-Stokes. One method for
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avoiding using full Navier-Stokes is to solve the 3D Euler (inviscid) flow equations for the shock
layer flow around a body, then use the results as boundary layer edge conditions for an
axisymmetric boundary layer solution.'>"* Even this quasi-3D technique is very labor- and
computer-intensive. The technique developed in this report is one of intermediate complexity, in
which 2D axisymmetric methods may be used with modifications to approximate the flow field
and heat flux on a 3D geometry. This technique yields very good approximate heating that
includes surface catalytic effects for chemically nonequilibrium flows. Likewise, one also
obtains other flow properties such as species concentrations near the surface. Although the
method can be used to scale any set of 2D viscous flow equations, it is applied here to the
chemically nonequilibrium 2D VSL equations, specifically, the Miner and Lewis code'* as
modified to include finite wall catalysis boundary conditions."

This report presents scale factors used to modify the VSL equations written in body-oriented
coordinates. The method requires computing scaling parameters based on body surface
derivatives. The code CONVERT computes these scale factors and other geometry parameters
needed in the VSL3D code*. Paraboloids of elliptical cross section are used here to compare
with previous work and to illustrate how the method is used. The paraboloid geometry is defined
by an auxiliary program, PARG. For each meridional plane and angle of attack of interest, it
computes the coordinates and surface derivatives that the code CONVERT uses. To validate this
approximate technique we compare its results with 3D results. The Miner and Lewis code solves
the 2D VSL equations in body-surface and body-normal coordinates (S,m), whereas the original
3D body is defined in Cartesian coordinates. Therefore, a third code, INTPX, is used as a post-
processor. It uses the output coordinates from the VSL3D code to interpolate the original body
coordinates to obtain corresponding locations in the original coordinate system. This is useful
for locating the flow properties at locations on the original 3D body.

Results arc obtained for several cases for paraboloids of elliptic cross section and compared with
3D VSL solutions.

Analysis
Body Coordinates and Input Parameters for VSL3D Code

The modified 2D VSL equations are solved in a streamwise direction along the surface of an
axisymmetric body that is equivalent to specific meridional planes ¢ of the 3D body. There is an
equivalent axisymmetric body (EAB) for each desired meridional plan and angle of attack. The
meridional plane is defined by a plane through the stagnation point, parallel to the wind velocity.
The windward symmetry plane represents ¢=0 and the leeward symmetry plane corresponds to

* In this report we denote the axisymmetric viscous shock layer code as VSL and the one modificd to handle the 3D
EAB as VSL3D.



¢=180°. The input parameters required by the VSL3D code are the axial distance from the
stagnation point z;, the distance from the axis to the body r,, the surface distance s, the local
body curvature in the r,,z,-plane, x, and the angle 0, which is the local body tangent with respect
to the velocity vector Vi See Figure 1 for a pictorial definition of these parameters. In
addition, the modified VSL code requires the scale factor H/H,, which is the ratio of mean
curvature of the 3D body to that of the EAB. The code CONVERT computes these parameters
from coordinates and surface derivatives for each meridional plane of the 3D body defined in a
Cartesian system of coordinates by the equation z=f(x,y). The pitch plane (plane of symmetry) is
defined by y=0. The geometrical stagnation point is the location on the windward pitch plane at
which the local surface of the body is normal to the velocity vector.

For Elliptic Paraboloid

k=(a/b)2 Zn
X
Meridional Plane
> Z
Windward
y Pitch (Symmetry) Plane
yn 8] /
Xn » Zn
\L
S
Vinf ¢ Equivalent
’ Axisymmetric
Body

Figure 1 Coordinatc systems for 3D and equivalent axisymmetric bodies.

The mean curvature of the EAB is given by

-1
HY:x+r cos@ M
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and the mean curvature of the 3D body at a point on the surface is
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These expressions are obtained using differential geometry and their specific forms depend on
the coordinate system used. The scale factor H/H; is applied to the characteristic length or to the
Reynolds number that appears in the nondimensional form of the flow equations. It is derived in
Ref. 1.

Surface coordinates and surface derivatives in the Cartesian frame are inputs to the code
CONVERT, along with the corresponding angle of attack and the meridional angle. To calculate
these parameters, it was necessary to deal with several special cases where certain factors are
singular or ill conditioned because of the local geometry. It is also necessary to define these
quantities at the stagnation because it is a singular point. The following analysis gives the
different forms of the equations used in the program CONVERT, which computes these
quantities and the equivalent body radius r and streamwise distance s that the VSL code uses.

At the stagnation point z, = s =1, = 0 and 0 = /2. At points away from the stagnation point, we
have the following equations for the axial distance z,, and the other transformed coordinates x,

and yy:
x, =(z—2z,)sinax + (x — x,)cosa 3)
2, =(z—zp)cosa —(x — x,)sina (4)
Yo=Yy (5)

where zpand x¢ are coordinates of the stagnation point in the original Cartesian coordinate
system. The EAB origin is the stagnation point (X,, 0, z,), and its axis z, is directed along the
free stream velocity. The coordinates of the stagnation point are defined by the equations

f o= tano
Zo = f(Xo, 0).
The equation of the meridional plane passing through the axis z, is
y=x, tanga:[(z—z“)sina+(x—x”)cosa]tan¢. (6)
The body angle 9 is given by

f,sina +cosa

sinf = - = (7
1/1+fx +f"<

To find the coordinates 1, and s we must integrate the body radius and the arc length along the

surface of the 3D body in a meridional plane. These quantities are given by

r Zfd’" d (8)
n = Zn
0 dZn

and



s= j 4 4 9)
0

dz,
where
}
. =tand 10
i (10)
ﬂ —cos '@ 11
d cos (11)

Since these integrands are singular at z, = 0, we perform an integration in the direction different
from z, from z, = 0 to some small distance away, z,;. These integrals ry(z,) and s(z,) are then
performed as

= d —dz, (12)
0 Zn/ "
for ¢ #90°, or
dr
r, = (13)
-Idy
if @ =90°.
X, z,
tds ds
§= |—dx+ |—dz, 14)
'([dx J‘dzn (
if @ #90°, or
ds J‘ (15)

if @ =90°. The point at which we make the crossover is a parameter that we have taken
arbitrarily to be z, = 0.1. These expressions are integrated using Simpson’s rule.

For the region away from the stagnation point where z, > z, we integrate along the axial
coordinate, where we use the relations (10) and (11). In this zone we integrate with respect to z,
from z, to Z,.

The surface arc length ds and radial distance dr are determined from the following equations
where we integrate in the x or y direction. When ¢ is very near 7/2 the differential dr is given by

sinax +cosa) f, cosa
dr, dr, : U ), = tan§f, cosax (16)
dy dz, = \/(fx cos—sina)’ + ) '
and ds is given by



2 2
% = ;Tsnf) cosa = f, cosot\/(fr cos];—fxsi:o{))z s =f, f:(c))zg : (17)
When ¢ # /2 and for points for which z<zy
ﬂ _ dr, (/. +df )cosc —sina] = (f, sina+cosa)[(f, +df,)cosa —sina] (18)
dx dz, ! \/(fxcosa—sina)2+f)2
=tan6[ (f, +df )cosa —sina]
and
1+ f2+f]
% = ;dzsj[(fj +df )cosa —sina] =[(f, +df,)cosa —sin 0(]\[1{t c;sa{xsin£;2)+ I (19)
=[(fx +df_‘.)cosa— sina]/cose
If @ = /2, then at the stagnation point [dry/dy]o = [ds/dy]o = 1.
If ¢ # /2, then
dx |, Ldx |, \/ffw cosza+d§f)§,0

We can obtain the curvature in terms of the surface derivatives of the 3D body and angle of
attack .. The body in a Cartesian coordinate frame is defined as z=f(x,y). The body curvature is
defined from

K:_ﬁ:_d(smé). @1
ds dz

n

When ¢ # /2, we have

(f. +dfn)[f‘ cosa — sin()l(f).2 + ])]+ (fo +df IS, S, sina+ f cosa)

T+ 12+ 17[(f, +df)cosa—sina] -

K

where the full derivative along the meridional plane is

P
dzd_y= cos .fx sina tang. (24)
dx 1-f sinatang

When ¢ = /2 equation (22) reduces to

fn' [f\ cosx — Sina(.f\‘2 + 1)]+ f\'va(fx Sina+c03a)
= ' -3 : (25)
ficosa(l+ 2+ f1)"




The ratio of mean curvatures for the 3D body to an EAB is given by

1+ f2 1+ f)-2
H/H = ! +f"}?+f"‘“( v f‘“‘{“f’ (26)
(K +r, cosO)(1+ f2+ [

where ry, is the distance from the axis of the EAB.

The angle of attack is given in the input as a; the meridional angle is ¢. Two forms of equation
for the body curvature x are used, depending on whether the meridional an gleo=n/2. If
¢ = /2, we use the form

([0 tdof ) €os@+do(f o +dof 10) fro(fro SN+ cOSQX)

K, 3 (27)
° (1+ f_xzo)y~ cosa(f , + 2d0fxy0 + d()zf)‘)'U)
where
cosa + f ,sina
o= ; tang. (28)
1-f,,sinatan
If @ 1s about /2, then (22) reduces to the form
f2y cosa+ f, ) (f.,sina+cosa)
KO - ' N 2532 (29)
f“,o cosa(l+ f )
The subscript o denotes the stagnation point.
The ratio of average curvatures at the stagnation point is
fxx (1 + f“i) + fvv (1 + fxz ) (f,tm COSZ @+ f\'\‘ﬂ)cosa
(H/Hs)u = : ' -2-03/2 = - (30)
2,((1 (1 + fxO) 2’(1)
After calculating these variables, they are then normalized with respect to the stagnation point
curvature:
Z0= 20 Ko 31)
Iy = rn*Ko* (32)
s = s (33)
H/H, = (H/H,) %" (34)
k=% /xo (35)

where the superscript * denotes the dimensional or unscaled variables. The scaled variables,
along with the body angle 6, are output from the CONVERT code to be used as input in the
VSL3D code. They represent the axisymmetric body that is equivalent to the actual 3D body



along a meridional plane. Appendix A gives a listing of the computer code CONVERT used to
generate input for the VSL3D code.

Modifications to the VSL Code

The VSL equations for an axisymmetric body are given in Ref. 8, but they must be modified
slightly for correct application of the EAB. From similarity relations? it follows that, to obtain
heat flux, shear stress, and species concentrations on an actual 3D body, we have to solve 2D
equations for the EAB with variable Reynolds number, Re’ = (H/H)Re. The VSL equations are
thus modified by the transformation using the 3D body parameters. The only places in the VSL
code that require modification are in the calculation of Re or the Reynolds number parameter

£’ =1/Re and the parameter WREF=<R,. These parameters, associated with length scaling, are
multiplied by H/H; at each point along the surface of the EAB.

Since the VSL3D code has additional inputs due to its new features, a sample input file is
included in Appendix B. Appendix C contains the UNIX run stream for a series of cases. The
output from the VSL3D code is found in Fortran unit 23, a sample of which is found in
Appendix D. The output from the interpolation code is found in Fortran unit 50, a sample of
which is found in Appendix E. Note that the nomenclature on output from the VSL3D code is
different from that found in this paper. Table 1 defines the correspondence between the two
systems of nomenclature.

Table 1 Symbeol Correspondence

Symbols used in Symbols in VSL3D and

this report INTPX code output
£ RS, rs(I)
Zn XB, xb(I)
s , S, s(I)
q qw
ck
H/H, HHS
T tauw
€ eps

Application to an Elliptic Paraboloid

To test the coding and the accuracy of the methodology, we have implemented a code that
computes the shape parameters for a paraboloid having an elliptic cross section. This can be



expressed in Cartesian coordinates as z = Va(x” + ky?), where vk =a/b is the ratio of principal
axes (x-to-y) of the elliptic cross section (or ratio of principal curvatures at the apex of the
paraboloid). An auxiliary code (PARG) was used to calculate the shape and surface derivatives
along planes through the wind axis of the paraboloid at angle of attack. The output of PARG is
then used as the input of CONVERT to generate the geometry data file for VSL3D. PARG
generates lines of data, given k, the angle of attack o, and the desired meridional plane @. The
windward symmetry plane corresponds to ¢ = 0 and the leeward symmetry plane to ¢ = 180°.
The location of the stagnation point is simply the point where the normal to the surface is parallel
to the wind axis, or where dz/dx = xy = tano. and yo=0. Then z; = 1/2x02 = Vstan’ 0. An array of
coordinates along a meridional plane on the surface of the paraboloid is set up in equal steps in x
unless ¢ = 90°. If @ = 90°, then equal steps in y are taken and all x = x,. When the body surface
angle becomes parallel to the free stream flow (in the code when cos® < 0.01) the line of points
is terminated because we can only calculate the flow where the surface is presented to the wind.
When ¢ # 0 or 180° and if ot # 0 we have the expression ‘

1-y/1-ktan® gsin’ afx’ + 2xcota — (2 + tan )]

Y= ksinotan @ (36)
or if ot =0 then
y = x tan¢. (37)
If @=0 or 180°, then y=0.
We then find the array of z values from
z = f(x,y) = Ya(x* + ky?). (38)

The surface derivatives are determined analytically and we get the expressions f = x, fy =ky,
fuxx =1, fiy = 0, and fy, = k. A listing of the code that generates the paraboloid geometry is given
in Appendix F.

Results

To test the code we have applied it to several flight cases for elliptic paraboloids. Table 2
describes the flight conditions and Table 3 gives the geometrical parameters used in the
calculations. The surface catalytic recombination coefficients are taken from Ref. 16; and the
wall temperature is calculated in the code under the assumption of radiation equilibrium.



Table 2 Flight Conditions for Test Case for Elliptic Paraboloids

Altitude, Velocity, Densitsy, Temperature,
km km/s kg/m K

70 7.25 5.91x10° 200

Table 3 Geometry Configuration for Test Cases

Radius at Stag. Point  Angle of  Cross Section  Meridional

in x-z plane, m Attack, oo Axis Ratio, k Plane, ¢
0.5 0 0.25 0
0.5 0 0.25 45
0.5 0 0.25 63.4
0.5 0 0.25 76
0.5 0 0.25 90
0.7 15 04 0
0.7 15 0.4 180
0.7 30 04 0
0.7 30 0.4 180
0.7 45 0.4 0
0.7 45 04 180
0.5 0 04 0
0.5 0 0.4 45
0.5 0 0.4 90

The first comparison is a flight case for an elliptic paraboloid at angle of attack of zero. This
elliptic paraboloid has a ratio of principal axes of 0.5, or k=0.25. The method was applied to five
meridional planes @ where the PARG code was used to compute the geometry and surface
derivatives for each ¢. The code CONVERT transformed these 3D parameters (coordinates and
surface derivatives) into EAB coordinates parameters zp, Iy, S, X, 0, and H/H;. These parameters
were input into the VSL3D code (the modified axisymmetric VSL code8) and solutions were
found. Then the streamwise values were interpolated to transform these locations back to the 3D
body coordinates using a code given in Appendix G. The results for the first comparison are
shown in Figure 2, where the solid curves are from the axisymmetric analog solution described

10



here and the open circles are solutions of the 3D VSL equations from Ref. 17, solved by an
implicit finite difference scheme'® of fourth-order accuracy in normal coordinates and second-
order accuracy in longitudinal coordinates as implemented by Shcherbak' for 3D viscous flows.
The agreement is quite good, within about 7% or better.

Paraboloid k=0.25 R°=0.5m
h=70 km Vinf=7.25 km/s

50 Scott Catalycity

O L L B AL S
‘\w,‘_é';‘?"s . 1
TS SN OO s . Meridiona
I S Q - S . Angle ]

: Ce) QN°
40 :‘ """"""" Q """ """"""" ' 0 7]
! 5 R 0
I 1 ' ©

o S . o
o sl V0 N NG S
S : : : . : D
= Z e W Q ]
O 20 NG N @ $3.42
I | ? Q. ¢
| e
10| g B
[ Q - 0o
I D

0 R ST S N S SO RS ST S R
0 0.5 1 1.5 2

r

Figure 2 Hcat flux distribution at various meridional angles on an elliptic paraboloid:
k=0.25, R,=0.5 m, h=70 km, V..=7.25 km/s, catalytic rates from Ref. 15, and radiative
equilibrium wall. Open circles are 3D viscous shock layer calculations from Ref. 17.
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The second comparison is for the same flight case but with a body of larger radius at the
stagnation point (R,=0.7 m) with elliptic cross section having k=0.4. The angle of attack was
varied, and the results for the pitch plane (plane of symmetry) are given in Figure 3. These
results are compared with 3D VSL solutions from Ref. 2. Here the agreement is good, but tends
to diminish on the windward side far away from the stagnation point. The shear stress for this
case is given in Figure 4 and is compared with 3D solutions from Ref. 2.

50
o
Present Method 15
40 -——————— 3D VSL Ref. 2
NE 30
L
;-
& 20
10 \{. :
R
\
0
-2 -1.5 -1 -0.5 0 0.5 1

x’=-[0.5*(x*-TAN(0))%)*SIN(0)+(x-TAN(cx))*COS(c)]

Figure 3 Heat flux distribution on symmetry planc of clliptic paraboloid at various angles of
altack with: R,=0.7 m, k=0.4, h=70 km, V.=7.25 km/s, catalytic rates from Ref. 15, and
radiative equilibrium wall. Dashed lines are 3D viscous shock laycr calculations from Ref. 2.

As example of surface atom mass fractions, we show results for an elliptic paraboloid having a
principal axis ratio of 0.707, or k=0.5 at an altitude of 70 km, velocity of 7.25 km/s, and nose
radius in the pitch plane of symmetry of 0.7 m. Fig. 5 shows the mass fractions of oxygen and
nitrogen in three meridional planes. Other flow field properties are available for these equivalent
axisymmetric bodies calculated by the VSL3D code.*

* The source code for the modified Miner and Lewis viscous shock layer code (VSL3D) is available from the author
at ES3, NASA Johnson Space Center, Houston, TX 77058.
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Paraboloid k=0.4 R,=0.7 AoA=15
h=70 km V;,=7.25 km/s Scott Catalycity

‘ Present Method ‘ - 7N
———— 3D VSLRef. 2 ’ :

0.02
0015 -
Ct

0.01

0.005

-2 -1.5 -1 -0.5 0 0.5 1
x’=-[0.5*(x*-TAN(a)’)*SIN(a)+(x-TAN(a))*COS(a)]
Figure 4 Shcar stress distribution on elliptic paraboloid at an angle of attack of 15°: R,=0.5 m,

k=0.4, h=70 km, V_=7.25 km/s, catalytic rates from Ref. 15, and radiative cquilibrium wall.
Dashed lines are 3D viscous shock layer calculations from Ref. 2.
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Elliptic Paraboloid k=0.4 Ro=0.5
Vinf=7.25 km/s h=70 km Scott Catalycity

Meridional Angie 49
0
02 ~ Atomic Oxygen ’
§ 0.15
©
® 45
w -
0 0, u® -
8 0.1 e 90
S 0.
[T 2 Atomic Nitrogen
0.05
0 .
0 0.5 1 1.5 2 2.5 3

n

Figure 5 Mass fraction distributions of N and O on mcridional planes of an clliptic paraboloid:
R,=0.5 m, k=0.4, h=70 km, V_.=7.25 km/s, catalytic rates from Ref. 15, and radiative equilibrium.

Conclusions

An axisymmetric analog technique has been developed and codes to implement it have been
described that allows one to calculate heat flux distributions on 3D bodies or 2D bodies at an
angle of attack (thus in a 3D flow field). The technique follows that of Brykina, et al.,’ and
results from it have been compared with 3D VSL calculations of heat flux on elliptic
paraboloids. The technique involved modifying the Miner and Lewis®'? nonequilibrium, seven-
species, 2D VSL code. The results indicate that there is very good agreement between the EAB
results and the 3D calculations.

The method also can be implemented in any axisymmetric flow code to simulate a 3D body or
flow by modifying the equations with the scale factor H/H; and using the EAB coordinates. This
method can be applied to any blunt geometry that can be described by coordinates and surface
derivatives. Further applications will be the subject of a future publication.
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Appendix A - Listing of the program CONVERT that computes equivalent axisymmetric
coordinates and scaling parameter H/H, from input surface geometry data

Cc Program Convert

c
parameter (nn=1000)
dimension z(nn),fx(nn),fy(nn),fxx(nn),fyy(nn),fxy(nn)
dimension r(nn),s(nn),ck(nn),th(nn),hhs (nn)
commorn/body/ xm(nn),ym(nn),x(nn),y(nn),fs(nn),fr(nn),zn(nn),n
external fsx,frx,frz,fsz, fsy, fry , fsxm, frxm
c
character*8 na,me
real*4 k,lzn
¢ Input angle of attack alpha, degrees
¢ Input angle fi and number of points n for meridional plane
¢ Input file for geometry along meridional plane
¢ Input small interval lzn near stagnation point for integral on X
e There should be several grid points within the interval lzn.,
c integrate wrt x near stagnation point and wrt z elsewhere.
alpha=0.
fi=0.
read (31, *)k,alpha, fi
write(6,*)k,alpha, fi
fid=fi
j=1
1 read(31,*,end=999,err=888) x(3),y(3).z(3),fx(3), fy(3),
*oExx(3), fxy(3), fyy ()
xm(j)=-x(7)
ym(J)=-y(3)
J=3+1
go to 1
888 write(6,*)’ 1In cgeomn: Error reading unit 31.°
999 continue
n=j-1
write(33,32) ( x(3),v(3).z(3),£x(3), fy(3), £xx(3),
¥ Exy(3),fyy(3).i=1.5)
write(6,*)' no. of points read’,n
32 format (8gl6.6)
1zn=0.1
¢ End of input
c

alpha=alpha*1.5707963/90
fi=£i*1.5707963/90 ,
if(abs(fi-1.5708).1£.0.001) go to 26
a=tan(fi)
26 ca=cos (alpha)
sa=sin(alpha)
c
c Stagnation point
write(29,*)'zn ¢k th’
zn(1l)=0.
s({1)=0.
r(1l)=0.
th(1)=1.5707963
if(abs (£i-1.5708).1t.0.001) then
ck(l):(fxy(l)**2*ca+fyy(l)**2*(fx(1)*sa+ca))/
* (fyy (1) *ca* (1.+fx(1)**2)**1 5)
else
da=(ca+fx(1l)*sa)/(1l.-a*fy(1) *sa)
c23456789012345678901234567890123456789012345678901234567890123456789012
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ck(1)=((fxx(1)+a*da*fxy (1)) * (fxx (1) +da*a*fxy (1)) *ca+ra*da*
* (fxy (1) +a*da*fyy (1)) *fyy (1) *(£x(1) *sa+ca))
J((l.+Ex{1)**2)**1 S5*ca* (fxx(1l)+2.*a*da*fxy (1) +da**2*
* a**z*fyy(l)))
endif
hhs(1)=0.5* (fxx (1) +fyy (1) *(1.+fx(1)**2))/
* ((1.+fx(1)**2)**1.5*ck (1))
write(29,*)zn(1),ck(1),th(1)*90./1.5707963

Meridional plane
Compute z-distance (zn), curvature (ck) and angle (th):

annn

do 30 j=2,n
zn(jy=(z(j)-z(1))*ca-(x(Jj)-x(1))*sa
(abs(fi 1.5708).1£.0.001) then

ck(3)=(fxy(3) * (Ex(j) *ca-fy(j)**2*sa-sa)+fyy (3} *Ey(3)*
* (fx(] *sa+ca))/ (fy () *ca* (1+fx () **2+fy(j)**2)**1.5)
else
da=(ca+fx(j)*sa)/(l.-a*fy(]j)*sa)
ck(j)=((fxx(J)+a*da*fxy(j)) *(fx(]j) *ca-fy(]j)**2*sa-sa)+
* (fxy (J)+a*da*fyy(3)) * (fx(J) *fy () *sa+fy(]) *ca))/
* ((1+Ex(J)**2+fy (J)**2)**1.5* ((fx(j) +a*da*fy(])) *ca-sa))
endif
th(j)=asin{(fx(j)* sa+ca)/SQRT(1+fx(j)**2+fy(')**2))
write(29,*)zn(j).ck(3), 3)*90./1.5707963
30 continue

c

c Compute body radius (r) and surface distance (s):
3=1
do while(zn(Jj).1lt.1lzn)

j=j+1

end do
ji=3]

c
if(abs(f1-1.5708).1t.0.001) then
fr(1)=1
fs(1)=1

do 37 j=2,33+1
fr(j)=(sa*fx(j)+ca)/sqrt((fx(J) *ca-sa)**2+fy(j)**2) *fy(j)*
fs(J)= sqr;((1+Fx(j)**2+fy(j)**2)/((fx(j)*ca—sa)**2+fy(j)**2))*
* fy(j) *ca
c23456789012345678901234567890123456789012345678901234567890123456789012
37 continue
do 39 j=2,33
call simp(fsy,y(3j-1).,y(3
call simp(fry,y(j-1),y (]
s(j)=sy+s(3-1)
r(j)=ry+r{j-1)
39 continue
else
if(a.1t.-.00000001) then
d=a/ca
fr(jj)=(fxx{(1l)+ad*fxy (1) +d* (fxy (1) +d*fyy(1)))/
* sqrt((fxx(l)+d*fxy(l))**2*ca**2+(fxy(1)+d*fyy(1))**2)
jy=fr(3jj)
( j)=x(1)
do 41 3=2,33j+1
i=33-J+1
da=(ca+fx(j)*sa)/(1l.-a*fy(J)*sa)
fr(i)=(sa*fx(j)+ca)/sart((fx(j)*ca-sa)**2+fy(3)**2)
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C
C

* *((fx
£s(1)

(j)+a*da*fy (7))

=sqari ((1+£fx(J) **2+fy(

* ((fx(j)+a*da*fy(]))
=-fr(1i)
=-fs (1)

fr(1)
fs(i)
xm{1)

=x{3)

41 continue

do 51
call
call
s (1)
r(i)

51 continu
elise
d=a/ca
fr(l)=

=S8+8
=rr+r

1=2,53
simp
simp

e

*ca-sa)

*ca-sa)

(fxx (1) +d*fxy (1
* saro ((Exx (1) +d*fxy (1

=sgrt ((1+£fx(

a)/ (1.

fs(1)=£fr (1)
do 40 j=2,3jj+1
da=(ca+fx(j)*
fr(j)=
* *((f
fs(j)=
* ((£x (3

34 format (4
do 50

call simp(fsx,x(j-1),x

fsxm,xm(i~1),xm(1i
frxm,xm(1i-
i-1)
i-1)

1)

3)**2) /7 ((fx

,xm(i),rr)

y+d* (Exy (1) +d*fyy (1) ))/

))**2*ca**2+ (fxy (1

-a*fy(j) *sa)

J+a*da*fy(j))*
40 continue

gl6.6)
3=2,3]

call simp(frx,x(j-1)

s(3)

r(j)

50 continu
endif

endif

Do 60 j=33j-1,n

e

=ss+s(j-1)
=rr+r(j-1)

fr(j)—tan(th( ))
1/cos(th(3))

fs(j)=
60 continue

write(32,
write(32,
do 70 j=jj+1.,n

34) (x

{

*}'x(3),zn(3),
J).zn(3)

call simp(fsz,zn(jj)
call simp(frz,zn(jj),zn(j),rrr)
(3) +sss
r(jj)+rrr

s(j)=s
r(j)=
70 continue

(sa*fx(j)+ca) /sqgrt(
x(j)+a*da*fy(j)) *ca-sa)
')**2+fy(

ca-sa)

(i) .ss)

,X(J) ., rr)

fr(]

,zn(j)

fs

), Es (3
r(j), fs{

3)**2) 7/ ((Ex(

) 1
j).3=1.n)

,5s88)

) +d*fyy (1

(§)*ca-sa) **2+fy (7)

))**2)

(fx(3J) *ca-sa) **2+fy(3) **2)

**2))*

J)*ca-sa) **2+fy () **2) ) *

Compute a ratio of average curvatures of 3D and axisymm. bodies hhs:

do 80 j=
h=0.5

2,n
* (fxx(

* 2*fXY(j)*fX(

hs=0
hhs(
80 continue

5% (ck(
j)=h/hs

)*(1+fy
J)*Ev (3

Jj)Y+cos(t

(
)
h

i)
)/
(3)

*r2)+Lfyy (3)*
(1+£x(3) **2+fy (j) **2)**1 .5

Y/r(3))

(1+£x(J) **2) -

Do scaling for body with stagnation point radius =

do 90 3

=2,n

zn(j)=zn(3) *ck (1)

r(j)
s(3)

=r(3) *ck(1)

=s(J) *ck (1)
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ck(j)y=ck(j)/ck(l)
hhs (j)=hhs(3j) *ck (1)
90 continue

zn{l)=zn(1l) *ck{1)
r{l)=r(l)*ck(l)
s{(1l)=s(1)*ck (1)
hhs(1)=hhs (1) *ck (1)
ck(l)=ck(l)/ck(l)

C
c Create a file for M.-L. code:
hhsl=1.
c write(40,*) ' jj alpha, fi, n ’,3jj,alpha,fid,n
write(40,88) (zn(j).,.r(3),s(J),ck(J),th(3)
,hhs(3),j=1,n)
c *  hhsl,j=1,n)
88 format (6gl6.6)
stop
end
function fsx{xx)
parameter (nn=1000)
common/body/ xm(nn),ym(nn),x(nn),y{nn), fs(nn), fr(nn),zn(nn).,n
call intrp3(xx,x,fs,n, fsxx)
fsx=fsxx
return
end
c
function frx(xx)
parameter (nn=1000)
common/body/ xm{nn),ym(nn),x(nn),y(nn), fs{(nn), fr{nn),zn(nn),n
call intrp3(xx,x,fr,n, frxx)
frx=frxx
return
end
C
function fsxm(xx)
parameter (nn=1000)
common/body/ xm(nn),ym(nn),x{nn),y(nn), £fs(nn), fr(nn),zn{nn) .n
call intrp3(xx,x,fs,n, fsxxm)
fexm=fsxxm
return
end
C
function frxm(xx)
parameter (nn=1000)
common/body/ xm(nn),ym(nn),x{(nn),y(nn), £s(nn), frinn),zn(nn) ,n
call intrp3(xx,x,fr,n, frxx)
frxm=£frxx
return
end
c
function fsy(vy)
parameter (nn=1000)
common/body/ xm(nn),ym{(nn),x(nn),y(nn), fs(nn), fr(nn), zn(nn),n
call intrp3(yy.y.,fs.n, fsyy)
fsy=fsyy
return
end
c

function fry(yy)
parameter (nn=1000)

20



oNeoReNoNeNeNoNoNoNoNe] 0

@]

10

oonNnoonoonNnn

common/body/ xm(nn) ,ym(nn),x(nn),y(nn), fs(nn), fr (nn)
call intrp3(yy.y, fr,n, fryy)
fry=fryy
return
end

function fsz(zz)
parameter (nn=1000)
common/body/ xm(nn) ,ym(nn) ,x(nn),y(nn), fs(nn), fr (nn)
call intrp3(zz,zn, fs,n, fszz)
fsz=fszz
return
end

function frz(zz)
parameter (nn=1000)

common/body/ xm(nn) ,ym(nn) ,x(nn),y(nn), fs(nn), fr(nn),

call intrp3{(zz,zn,fr,n, frzz)
frz=frzz

return

end

SUBROUTINE INTRP3 (XX, X,Y,NPNTS,YV)

SUBROUTINE INTRP3 SETS UP THE CALLING ARGUMENT FOR
SUBROUTINE INTER3

SUBROUTINE INTRP3 CALLS SUBROUTINE INTER3.
SUBROUTINE INTRP3 IS CALLED BY MAIN.

YY IS THE VALUE RETURNED FROM ARRAY Y
WHICH CORRESPONDS TO THE VALUE XX IN ARRAY X

DIMENSION X (NPNTS), Y(NPNTS)

DATA SMALLT / 1.0D-6 /
FAC=1.0d40+SMALLT

JC=0

JC=JC+1

IF (XX.GT.X(JC)*FAC) GO TO 10
IF (JC.LT.2) Jc=2

IF (JC.GT.(NPNTS-1)) JC=NPNTS-1

CALL INTER3 (XX,X(JC-1),X(JC),X(JC+1),Y(JC-1),Y(JC),Y

RETURN
END
SUBROUTINE INTER3 (X,X1,X2,X3,F1,F2,F3,F)

SUBROUTINE INTER3 INTERPOLATES FOR THE VALUE F CORRESPONDING TO

POINT X USING 3 POINT LAGRANGIAN INTERPOLATION.

SUBROUTINE INTER3 IS CALLED BY SUBROUTINES INTRP3, HCP,

ASSUMES X1 .LE. X .LE. X3.

WRITE(O,*) ' INTER3: ENTRY'
AN1=(X-X2)* (X-X3)

AN2= (X- Xl)*(x X3)
AN3=(X-X1) * (X-X2)
DN1=(X1-X2)*(X1-X3)

21
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DN2=(X2-X1)* (X2-X3)
DN3=(X3-X1)*(X3-X2)
CN1=AN1/DN1

CN2=AN2/DN2Z

CN3=AN3/DN3
F=CN1*F1+CN2*F2+CN3*F3
WRITE(O,*) ‘INTER3: RETURN'’
RETURN

END

c integral by simpson’s rule

C

11

11

subroutine simp(func,a,b,s)

parameter (eps=1.e-2,jmax=20)

ost=-1.e30

os=-1.e30

do 11 j=1,jmax
call trapzd(func,a,b,st,])
s=(4.*st-ost) /3.
if{abs(s-o0s).lt.eps*abs(os))
os=s
ost=st

continue

pause ’‘'too many steps’

end

subroutine trapzd(func,a.,b,s,n)

external func
if(n.eqg.l)then

s=0.5* (b-a) * (func({a)+£func (b))

it=1
else
tnm=1it
del=(b-a)/tnm
x=a+0.5*del
sum=0.
do 11 j=1,it
sum=sum+func (x)
x=x+del
continue
s=0.5* (s+ (b-a) *sum/tnm)
it=2*i¢t
endif
return
end

return
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Appendix B - Input data file for the modified Miner and Lewis axisymmetric viscous shock layer

code, VIS3D
Z2=70. km Ro=0.5 m Brykina aoca=0 VINF=7.25 KM/SEC Finite CAT Scott
Sinput

ALT=70.00, For info and labeling only

BRAD=1.640, Nose radius in feet (in pitch plane)

DS=.03, Initial streamwise step size

IEND=200, Maximum number of streamwise steps

1
1
|
!
SEND=3.0, ! Final S value in nose radius
RINF=1.1l4e-7, ! Free steam density, slugs/cuft
|
!
!
!

TB=2600., Wall temperature, R
TINF=360., Free stream temperature, R
UINF=23786., Free stream velocity, ft/s
XLE=1., ! Lewls number
IGEOM=3, ! Geometry flag. 3=geometry read in from unit 4
NAN=1,NDATA=1,NS=6,NSI=6, ! VSL standard inputs, eg. No. of species
CAT=4, ! Catalycity flag. 4 = compiled in value for Scott’'s RCG values
DSN=1.,RAT=1.1,DSNN=.004, ! Streanmwise clustering parameters
THINI=1., ! Shock layer option. 1=Thin Shock layer equations 0=Full VSL
PRNTCI:O.,NTSH:ZO,XKETA:I.OB,KENDzl,KTWAL:O, ! VSL, standard input options
ITSW=1, ! Flag for Tw. 0=Const. input value. 1=Radiation equilibrium
Send

.233 .767 | Free stream mass fractions
.1 .133 0. .1 0. .677 ! Initial wall mass fracs.

Appendix C - Sample output from VSL3D code Fortran Unit 23

k i S XB RS ck HHS eps qw tauw cf C(O) C(02) C(NO) C(N)

11 0 0 0o 1 1 1.98E-02 505 0 O0.00E+00 0.1798 4.46E-02 1.89E-02 1.37E-04
1 2 0.033 0.0005 0.033 1 1 1.98E-02 49.38 6.572 8.76E-04 0.1799 4.46E-02 1.88E-02 1.37E-04
1 3 0.0693 0.0024 0.0692 1 1 1.98E-02 4938 13.97 1.86E-03 0.1784 4.61E-02 1.88E-02 1.29E-04
1 4 01092 0.006 0.109 1 1 1.98E-02 50.13 22.82 3.04E-03 0.1776 4.68E-02 1.90E-02 1.25E-04

Appendix D - Sample output from INTPX code Fortran Unit 50

ns=26 nb=201 ni=201

s(i) xb(i) rs(i)  x y z r zn gw  tau cf cO c02 cNO cN

0 0 o] 00 0 0 0 48.7 0 o 0.192  3.69E-02 1.06E-02 6.62E-02
0.033 0.0005 0033 0 0.132 0.0022 0.132 0.0005 48.42 3.134 2.03E-03 0.1921 3.69E-02 1.06E-02 6.62E-02
0.0693 0.0024 0.0692 0 0.277 0.0096 0.277 0.0024 48.46 6.686 4.33E-03 0.192 3.69E-02 1.06E-02 6.61E-02
0.1092 0.0059 0.109 0 0.4359 0.0238 0.4359 0.0059 48.51 10.53 6.82E-03 0.1919 3.71E-02 1.06E-02 6.62E-02
0.1532 0.0116 0.1526 0 0.6104 0.0466 0.6104 0.0116 47.87 14.55 942E-03 0.192 3.69E-02 1.06E-02 6.64E-02
0.2015 0.02 0.2001 0 0.8007 0.0801 0.8007 0.02 46.81 18.67 1.21E-02 0.1926 3.64E-02 1.05E-02 6.67E-02
0.2546 0.0317 0.252 0 1.0078 0.127 1.0078 0.0317 45.32 2279 1.48E-02 0.1937 3.55E-02 1.02E-02 6.73E-02
0.3131 0.0475 0.3083 0 1.2331 0.1901 1.2331 0.0475 43.42 26.73 1.73E-02 0.1952 3.41E-02 9.7BE-03 6.84E-02
0.3774 0.0681 03692 0 1.4766 0.2726 1.4766 0.0681 41.1 30.34 1.97E-02 01972 3.42E-02 9.23E-03 7.01E-02
0.4481 0.0945 04348 0 1.7386 0.3778 1.7386 0.0945 38.41 33.43 2.17E-02 0.1998 3.02E-02 8.53E-03 7.24E-02

C(NO+)

C(N2)

9.94E-11 0.7565
9.92E-11 0.7565
9.92E-11 0.7565
9.93E-11 0.7565

cNO+
9.83E-11
9.81E-11
9.80E-11
9.82E-11
9.81E-11
9.80E-11
9.79E-11
9.77E-11
9.74E-11
9.71E-11

cN2
0.6943
0.6943
0.6944
0.6943
0.6941
0.6939
0.6933
0.6925
0.6911
0.6891



Appendix E - UNIX run stream for computing a set of cases for a paraboloid.

parg

cp fort.31 £31.25-0-0

cgeomn

cp fort.40 fort.4

cp fort.40 f£40.25-0-0
vsl3d<in-Sl.6tre>ou.25-0-0sl.6tre
cp fort.23 f£23.25-0-0Osl.btre
intpx

cp fort.50 £50.25-0-0sl.6tre
parg

cp fort.31 £31.25-0-45

cgeomn

cp fort.40 fort.4

cp fort.40 £40.25-0-45
vs1l3d<in-Sl.6tre>ou.25-0-45sl1.6tre
cp fort.23 £23.25-0-45sl.6tre
intpx

cp fort.50 £50.25-0-45sl.6tre
parg

cp fort.31 £31.25-0-63.4

cgeomn

cp fort.40 fort.4

cp fort.40 £40.25-0-63.4
vsl3d<in-Sl.6tre>ou.25-0-63.4sl.6tre
cp fort.23 f£23.25-0-63.4sl.6tre
intpx

cp fort.50 f50.25-0-63.4sl.6tre
parg

cp fort.31 £31.25-0-76

cgeomn

cp fort.40 fort.4

cp fort.40 £40.25-0-76
vsl3d<in-Sl.6tre>0ou.25-0-76sl.6tre
cp fort.23 £23.25-0-76ésl.6tre
intpx

cp fort.50 £50.25-0-76sl.6tre
parg

cp fort.31 £31.25-0-90

cgeomn

cp fort.40 fort.4

cp fort.40 £40.25-0-90
vsl3d<in-Sl.6tre>ou.25-0-90sl.6tre
cp fort.23 f23.25-0-90sl.6tre
intpx

cp fort.50 £50.25-0-90sl.6tre
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Appendix F - Listing of the program PARG that generates geometric data for an elliptic paraboloid

C Program 3D paraboloid geometry along meridional plane

c
parameter (nn=1000)
dimension y(nn),z(nn),fx(nn),fy(nn),fxx(nn),fyy(nn),fxy(nn)
dimensior x{(nn)

9]

real*4d k
Input ratio of main curvatures at a stagnation point k
Input angle of attack alpha, degrees
Input angle fi, number of points n and step dx for meridional plane

0000

k=0.4
alpha=30.
fi=0.
n=201
write(6,*)' Input k,alpha, fi’
read (5, *)k,alpha, fi
write(6,*)’ Input file number’
c read(5,*)ifile
ol write(ifile, *)k,alpha, fi
write(31,*)k,alpha, fi
dx=0.04
1f(fi.gt.90.)dx=-dx
End of input

0

alpha=alpha*1.5707963/90
fi=fi*1.5707963/90
if(abs(fi—l.5708).lt.0.00l)go to 17
a=tan(fi)
17 ca=cos (alpha)
sa=sin(alpha)
c
write(6,*)’ca sa’,ca,sa
c Stagnation point
x{(l)=sa/ca
y(1)=0
z(1)=0.5*x(1)**2
fx(1)=x(1)
fy(1)=0
fxy (1) =
Exx (1)
fyy (1)

0
1
k

i}

c
¢ Meridional plane
do 21 j=2,n
cosfi:(sa*fx(j—l)+ca)/SQRT(1+fx(j—l)**2+fy(j—l)**2)
if(cosfi.1t.0.01) go to 22
if(abs(fi-1.5708).1t.0.001) then
y(3)=y(3-1)+dx
x(3)=x(1)
else
X(j)=x(j-1)+dx
£x(3)=x(3)
if(abs(a).1t.0.000001)then
y(3)=0.
else
if(alpha.ne.0.)then
sss=(l-k*a*a*sa* (sa*x(j) **2
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777
21
22

32

+2*ca*x(j)-2*sa-sa**3/ca**2))
write(34,*)3,x(J),sss
if(sss.le.Q) then

write(6,*)’ In parg: sss 1is less than 0.’

go to 777

endif

yv{j)=(1-SQRT(l-k*a*a*sa* (sa*x

2*ca*x(])
else

-2*sa-sa**3/ca**2)

y(j)=a*x(J)

endif
endif
endif
z(3)=0. 5*(X(j)**2+k*y
fxx(7)
£y (3)

continue
continue
nfi=jj

write(ifile,32) |
write(31,32) (x{(]
fxy (3), Eyy (3).3
format (8gl6.6)
stop
end

x(3)
).y (
:,1’1

{3

]
fi

')**2)

y(3),z(3).,£x(3)
Y,z (3), Ex(3), £y (
1

)
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Appendix G - Listing of program INTPX that interpolates geometrical data by streamwise distances
calculated in the viscous shock layer code

c Program INTPX
dimension x(300),y(300),z(300),rn(BOO),rs(3OO),xb(3OO),5(300)
dimension zn(BOO),sn(BOO),qw(}OO),ta(300),c(300,5),cf(300)
character*8 a

c Arrays x,¥y,z,zn,rn,sn have indices that correspond to the same input
c body points.
¢ Arrays s,xb,rs are output from VSL at the same body point, but not same as
e for the input above.
¢ This code interpolates the input arrays to find values corresponding to the
c output points.
1 format (15x,£10.0,2£15.0 )
ni=0
do 2 1=1,300
read(4,3,end:999,err:888)zn(i),rn(i),sn(i),ck,th,hss
ni=ni+1l
2 continue
888 write(6,*)’ In intpx Error detected in read of unit 4°

999 continue
read (31, *)k,alpha, fi
3 format (8gl6.6)
nb=0
do 22 1=1,300
read(3l,*,end:997,err:887)x(i),y(i),z(i),fx,fy,fxx,fxy,fyy

nb=nb+1
22 continue
887 write(6,*)’ In intpx Error detected in read of unit 31°
997 continue
ns=0

read(23,10)a
10 format( a8)
do 4 i=1,300
read(23,550,end:998,err:886)k,ii,s(i),xb(i),rs(i),ck,hhs,eps
*,aw(i),ta(i),cf(i),{c(i,3),i=1,6)

ns=ns+1
4 continue
886 write(6,*)’ In intpx Error detected in read of unit 23°

988 continue
550 format(2i4,3f£10.4,13g12.4)
write(50,*)’ ns=',ns,’ nb=',nb," ni=‘',ni
write(50,*) 's(i) xb(i) rs(i) x y =z r zn qgw tau cf
* cO c02 c¢cNO cN cNO+ cN2 ‘
if(ni.gt.nb)ni=nb
do 20 1=1,ns
call intrp3(s(i),sn,x,ni,xx)
call intrp3(s(i),sn,y,ni,vyy)
call intrp3{(s(i),sn,z,ni,zz)
call irtrp3(s(i),sn,r,ni,rr)
call intrp3(s(i),sn,zn,ni, zzn)
rr=sqgrt (XxX**2+yy**2)
write(50,60)s(i),xb(i),rs(i),xx,yy,zz,rr,zzn,qw(i),ta(i),

* cf(i), (c(i,]).,j=1,6)

20 continue

60 format (3£10.4,5£10.4,9g12.4)
stop
end

SUBROUTINE INTRP3 (XX,X,Y,NPNTS, YY)
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SUBROUTINE INTRP3 SETS UP THE CALLING ARGUMENT FOR
SUBROUTINE INTER3

SUBROUTINE INTRP3 CALLS SUBROUTINE INTER3.
SUBROQUTINE INTRP3 IS CALLED BY MAIN.

YY IS THE VALUE RETURNED FROM ARRAY Y
WHICH CORRESPONDS TO THE VALUE XX IN ARRAY X

DIMENSION X ({NPNTS), Y{(NPNTS)

DATA SMALLT / 1.0D-6 /

FAC=1.0d0+SMALLT

Jc=0

JC=JC+1

IF (XX.GT.X(JC)*FAC) GO TO 10

IF (JC.LT.2) JC=2

IF (JC.GT. (NPNTS-1)) JC=NPNTS-1

CALL INTER3 (XX,X(JC-1),X(JC),X(JC+1),Y(JC-1),Y(JC),Y(JC+1),YY)
RETURN

END

SUBROUTINE INTER3 (X,X1,X2,X3,Fl1,F2,F3,F)

SUBROUTINE INTER3 INTERPOLATES FOR THE VALUE F CORRESPONDING TO
POINT X USING 3 POINT LAGRANGIAN INTERPOLATION.

SUBROUTINE INTER3 IS CALLED BY SUBROUTINES INTRP3, HCP, AND HCPA.
ASSUMES X1 .LE. X .LE. X3.
WRITE(O,*) ’ INTER3: ENTRY'’

AN1=(X-X2)* (X-X3)
AN2=(X-X1)* (X-X3)

AN3= (X-X1)*(X-X2)
DN1=(X1-X2)*(X1-X3)
DN2=(X2-X1)*(X2-X3)
DN3=(X3-X1)*(X3-X2)
CN1=AN1/DN1
CN2=ANZ2/DN2
CN3=AN3/DN3
F=CN1*F1+CN2*F2+CN3*F3
WRITE(O, *) ‘INTER3: RETURN'
RETURN

END
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